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Some subtleties and apparent difficulties associated with the notion of spontaneous breaking of
time translation symmetry in quantum mechanics are identified and resolved. A model exhibit-
ing that phenomenon is displayed. The possibility and significance of breaking of imaginary time
translation symmetry is discussed.
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Symmetry and its spontaneous breaking is a central
theme in modern physics. Perhaps no symmetry is more
fundamental than time translation symmetry, since time
translation symmetry underlies both the reproducibility
of experience and, within the standard dynamical frame-
works, the conservation of energy. So it is natural to
consider the question, whether time translation symme-
try might be spontaneously broken in a closed quantum-
mechanical system. That is the question we will consider,
and answer affirmatively, here.
Here we are considering the possibility of time crystals,

analogous to ordinary crystals in space. They represent
spontaneous emergence of a clock within a time-invariant
dynamical system. Classical time crystals are considered
in a companion paper [1]; here the primary emphasis is
on quantum theory.
Several considerations might seem to make the possi-

bility of quantum time crystals implausible. The Heisen-
berg equation of motion for an operator with no intrinsic
time dependence reads

〈Ψ|Ȯ|Ψ〉 = i〈Ψ|[H,O]|Ψ〉 →Ψ=ΨE
0, (1)

where the last step applies to any eigenstate ΨE of H .
This seems to preclude the possibility of an order pa-
rameter that could indicate the spontaneous breaking
of infinitesimal time translation symmetry. Also, the
very concept of “ground state” implies state of lowest
energy; but in any state of definite energy (it seems) the
Hamiltonian must act trivially. Finally, a system with
spontaneous breaking of time translation symmetry in
its ground state must have some sort of motion in its
ground state, and is therefore perilously close to fitting
the definition of a perpetual motion machine.
Ring Particle Model: And yet there is a familiar phys-

ical phenomenon that almost does the job. A supercon-
ductor, in the right circumstances, can support a stable
current-carrying ground state. Specifically, this occurs if
we have a superconducting ring threaded by a flux that
is a fraction of the flux quantum. If the current is con-

stant then nothing changes in time, so time translation
symmetry is not broken; but clearly there is a sense in
which something is moving.
We can display the essence of this situation in a simple

model, that displays its formal structure clearly. Con-
sider a particle with charge q and unit mass, confined to
a ring of unit radius that is threaded by flux 2πα/q. The
Lagrangian, canonical (angular) momentum, and Hamil-
tonian for this system are respectively

L =
1

2
φ̇2 + αφ̇,

πφ = φ̇+ α,

H =
1

2
(πφ − α)2 (2)

πφ, through its role as generator of (angular) translations,
and in view of the Heisenberg commutation relations, is
realized as−i ∂

∂φ
. Its eigenvalues are integers l, associated

with the states |l〉 = eilφ. For these states we have

〈l|φ̇|l〉 = l− α,

〈l|H |l〉 =
1

2
(l − α)2. (3)

The lowest energy state will occur for the integer l0 that
makes l− α smallest. If α is not an integer, we will have

〈l0|φ̇|l0〉 = l0 − α 6= 0. (4)

The case when α is half an odd integer requires spe-
cial consideration. In that case we will have two distinct
states |α ± 1

2
〉 with the minimum energy. We can clar-

ify the meaning of that degeneracy by combining two
simple observations. First, that the combined operation
Gk of multiplying wave functions by eikφ and changing
α → α + k, for integer k, in the Lagrangian leaves the
dynamics invariant. Indeed, if we interpret α in L as em-
bodying a constant gauge potential, Gk is a topologically
non-trivial gauge transformation on the ring, correspond-
ing to the multiply-valued gauge function A→ A+∇Λ,
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Λ = kφ/q. Note that the total flux is not invariant un-
der this topologically non-trivial gauge transformation,
which cannot be extended smoothly off the ring, so L is
modified. Second, that the operation of time-reversal T ,
implemented by complex conjugation of wave-functions,
takes |l〉 → | − l〉 and leaves the dynamics invariant if
simultaneously α → −α. Putting these observations to-
gether, we see that the combined operation

T̃ = G2αT (5)

leaves the Lagrangian invariant; it is a symmetry of the
dynamics and maps |l〉 → |2α − l〉. T̃ interchanges
|l ± α〉 → |l ∓ α〉. Thus the degeneracy between those
states is a consequence of a modified time-reversal sym-
metry. We can choose combinations |α + 1

2
〉 ± |α − 1

2
〉

that simultaneously diagonalize H and T̃ ; for these com-
binations the expectation value of φ̇ vanishes.
Returning to the generic case: For α that are not half-

integral time-reversal symmetry is not merely modified,
but simply broken, and there is no degeneracy. How
do we reconcile 〈l0|φ̇|l0〉 6= 0 with Eqn. (1)? The

point is that φ̇, despite appearances, is neither the time-
derivative of a legitimate operator nor the commutator of
the Hamiltonian with one, since φ, acting on wave func-
tions in Hilbert space, is multivalued. By way of contrast
operators corresponding to single-valued functions of φ,
spanned by trigonometric functions Ok = eikφ, do satisfy
Eqn. (1) for the eigenstates |Ψ〉 = |l〉.
Wave functions of the quantized ring particle model

correspond to the (classical) wave functions that ap-
pear in the Landau-Ginzburg theory of superconductiv-
ity. Those wave functions, in turn, heuristically describe
the wave function for macroscopic occupation of the
single-particle quantum state appropriate to a Cooper
pair, regarded as a particle. Under this correspondence,
the non-vanishing expectation value of φ̇ for the ground
state of the ring particle subject to fractional flux maps
onto the persistent current in a superconducting ring.
Symmetry Breaking and Observability: As mentioned

previously, the choice of a ground state that violates time
translation symmetry τ must be based on some criterion
other than energy minimization. But what might seem
to be a special difficulty with breaking τ , because of its
connection to the Hamiltonian, actually arises in only
slightly different form for all cases of spontaneous sym-
metry breaking. Consider for example the breaking of
number (or dually, phase) symmetry. We characterize
such breaking through a complex order parameter, Φ,
that acquires a non-zero expectation value, which we can
take to be real:

〈0|Φ|0〉 = v 6= 0. (6)

We also have states |σ〉 related to |0〉 by the symme-
try operation. These are all energetically degenerate and
mutually orthogonal (see below), and satisfy

〈σ|Φ|σ〉 = veiσ. (7)

The superposition

|Ω〉 =
1

2π

2π
∫

0

dσ |σ〉 (8)

is energetically degenerate with all the |σ〉, and it is sym-
metric, with

〈Ω|Φ|Ω〉 = 0. (9)

Why then do we prefer one of the states |σ〉 as a de-
scription of the physical situation? The reason is closely
related to the emergent orthogonality of the different |σ〉
states, as we now recall. We envisage that our system
extends over a large number N of identical subsystems
having correlated values of the long-range order param-
eter σ, but otherwise essentially uncorrelated. Then we
can express the total wave function in the form

Ψσ(x1, ..., xN ) ≈
N
∏

j=1

ψσ(xj). (10)

For different values σ, σ′ we have therefore

〈Ψσ′ |Ψσ〉 ≈
N
∏

j=1

〈ψσ′(xj)|ψσ(xj)〉 = (fσ′σ)
N → 0 (11)

for σ′ 6= σ and large N , since |fσ′σ| < 1. Similarly, for
any finite set of local observables (that is, observables
whose arguments include only upon a finite subset of the
xj), we have

〈Ψσ′ |O1(xa)O2(xb)...|Ψσ〉 ∝ (fσ′σ)
N−finite → 0 (12)

for σ′ 6= σ. Since the off-diagonal matrix elements vanish,
any world of local observations (including “observations”
by the environment) can be described using a single |σ〉
state. Averaging over them, to produce |Ω〉, is a purely
formal operation. Measurement of a non-singlet observ-
able will project onto a |σ〉 state.
This analysis [2] brings out several relevant points. The

physical criterion that identifies useful “ground states” is
not simply energy, but also robust observability. Math-
ematically, that requirement is reflected in the orthog-
onality of the Hilbert spaces built upon |σ〉 states by
the action of physical observables. The large N limit is
crucial for spontaneous symmetry breaking. It is only in
that infinite degree-of-freedom, or (as it is usually called)
infinite volume, limit, that the |j〉 and |σ〉 states become
degenerate, and the latter are preferred. Important for
present purposes: The preceding discussion applies, with
only symbolic changes, when we consider possible break-
ing of time-translation τ in place of phase symmetry.
Soliton Model: After these preparations, it is not dif-

ficult to construct an appropriate model. We consider a
large number of ring-particles with an attractive interac-
tion. Heuristically, we can expect that they will want to
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form a lump and, in view of Eqn. (4), that they will want
to move. So we can expect that the physical ground state
features a moving lump, which manifestly breaks τ .
To make contact with the argument of the previous

section, we need an appropriate notion of locality. For
simplicity we assume that the particles have an addi-
tional integer label, besides the common angle φ, and
that the physical observables are of finite range in the
additional label. (Imagine an array of separate rings,
displaced along an axis, so that the coordinates of parti-
cle j are (φ, x = ja).) I will return to these conceptual
issues below, after describing the construction.
An appropriate Hamiltonian is

H =

N
∑

j=1

1

2
(πj − α)2 − λ

N − 1

N
∑

j 6=k,1

δ(φj − φk)(13)

≡
N
∑

j=1

1

2
(πj − α)2 + V (φ1, ..., φN ),

with the understanding that H acts on periodic func-
tions, so the δ interaction is well defined. (Here the dis-
crete index appears as a subscript.)
We work in the mean field approximation, taking a

product ansatz

Ψ(φ1, ..., φn) =

N
∏

j=1

ψ(φj), (14)

and solving an approximate one-body equation for ψ. To
get such an equation, we define an effective potential

Veff.(φ1, ..., φN ) =

N
∑

j=1

W (φj)

W (φj) =

∫

∏

k 6=j

dφk ψ
∗(φk)V ψ(φk), (15)

so that

〈Ψ|Veff.|Ψ〉 = 〈Ψ|V |Ψ〉. (16)

Then the effective Schrödinger equation for Ψ,

i
∂Ψ

∂t
=

(

N
∑

j=1

1

2
(πj − α)2 + Veff.

)

Ψ, (17)

reduces to the one-body non-linear Schrödinger equation

i
∂ψ

∂t
=

1

2
(πφ − α)2ψ − λ|ψ|2ψ (18)

for ψ.
Consider first the case α = 0. Eqn. (18) can be solved

for a stationary state in terms of the Jacobi dn elliptic
function, with

ψ(φ, t) = e−iEtψ0(φ+ β)

ψ0(φ) = r dn (r
√
λφ, k2)

E = − r2λ(1 − k2

2
), (19)

with β a disposable parameter. To fix the parameters
k, r we must impose 2π periodicity in φ and normalize
ψ0. Those conditions become

E(k2) =

√
λ

2r

K(k2) = πr
√
λ (20)

in terms of the complete elliptic integrals E(k2),K(k2).
We can solve E(k2)K(k2) = πλ

2
for k2, given λ. The

minimum value of the left-hand side occurs at k = 0 and
corresponds to λ = π

2
. Here dn (u, 0) reduces to a con-

stant, and E = −1/4. As λ increases beyond that value k
rapidly approaches 1, as does E(k2). dn(u, k2) → sechu
and E → −λ2/8 in that limit. Of course the constant
solution with E = −λ/2π exists for any value of λ, but
when λ exceeds the critical value the inhomogeneous so-
lution is more favorable energetically. These results have
simple qualitative interpretations. The hyperbolic secant
is the famous soliton of the non-linear Schrödinger equa-
tion on a line. If that soliton is not too big it can be de-
formed, without prohibitive energy cost, to fit on a unit
circle. The parameter β reflects spontaneous breaking of
(ordinary) translation symmetry. Here that breaking is
occurring through a kind of phase separation.
Our Hamiltonian is closely related, formally, to the

Lieb-Liniger model [3], but because we consider ultra-
weak (∼ 1/N) attraction instead of repulsion, the ground
state physics is very different. Since our extremely inho-
mogeneous approximate ground state does not support
low-energy, long-wavelength modes (apart from overall
translation), it has no serious infrared sensitivity.
Now since non-zero α can be interpreted as magnetic

flux through the ring, we might anticipate, from Fara-
day’s law, that as we turn it on, starting from α = 0, our
lump of charge will feel a simple torque. (Note that since
Faraday’s law is a formal consequence of the mathemat-
ics of gauge potentials, its use does not require additional
hypotheses.) We can also apply “gauge transformations”,
as in the discussion around Eqn. (5). These observations
are reflected mathematically in the following construc-
tion: For any l, we solve

i
∂ψl

∂t
=

1

2
(−i∂φ − α)2ψl − λ|ψl|2ψl, (21)

with

ψl(φ, t) = e−ilφ ψ̃(φ + (l + α)t, t)

i
∂ψ̃

∂t
=

1

2
(−i∂φ)2ψ̃ − λ|ψ̃|2ψ̃ +

(l + α)2

2
ψ̃. (22)

As in the non-interacting ring particle model, the lowest
energy is obtained by minimizing l0 + α, for integral l0.
If α is not an integer ψl0(φ, t) will be a moving lump, and
time translation symmetry will have been spontaneously
broken. If α is half an odd integer, then its T̃ symmetry
is spontaneously broken too.
This example exhibits several characteristic features of

natural τ breaking [1]. The lump moves along a constant
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energy trajectory. The parameter β, which parameterizes
an orbit of (ordinary) translation symmetry, changes at
a constant rate; both τ and translation symmetry are
broken, but a combination remains intact.
Now let us return to address the conceptual issues

alluded to earlier. Our model Hamiltonian was non-
local , but we required observables to be local. That
schizophrenic distinction can be appropriate, since the
Hamiltonian might be – and, for our rather artificial
dynamics, would have to be – carefully engineered, as
opposed to being constructed from easily implemented,
natural observables. Moreover it is not unlikely that the
assumption of all-to-all coupling could be relaxed, in par-
ticular by locating the rings at the nodes of a multidimen-
sional lattice and limiting the couplings to a finite range.
Were we literally considering charged particles con-

fined to a common ring, and treating the electromag-
netic field dynamically, our moving lump of charge would
radiate. The electromagnetic field provides modes that
couple to all the particles, and in effect provide observers
who manifestly violate the framework of Eqn. (12). That
permits, and enforces, relaxation to a |k〉 state. Simple
variations can ameliorate this issue, e. g. use of multi-
poles in place of single charges, embedding the system in
a cavity, or simply arranging that the motion is slow. A
more radical variation, that also addresses the unrealistic
assumption of attraction among the charges, while still
obtaining spatial non-uniformity, would be to consider
charged particles on a ring that form – through repul-
sion! – a Wigner lattice.
Imaginary Time Crystals: In the standard treatment

of finite temperature quantum systems using path inte-
gral techniques, one considers configurations whose ar-
guments involve imaginary values of the time, and im-
poses imaginary-time periodicity in the inverse temper-
ature β = 1/T . In this set-up the whole action is con-
verted, in effect, into a potential energy: time derivatives
map onto gradients in imaginary time, which is treated
on the same footing as the spatial variables.
At the level of the action, there is symmetry under

translations in imaginary time (iTime). But since iTime
appears, in this formulation, on the same footing as the
spatial variables, it is natural to consider the possibility
that for appropriate systems the dominant configurations
in the path integral are iTime crystals. Let the iTime
crystal have preferred period λ. When β is an integer
multiple of λ the crystal will fit without distortion, but
otherwise it must be squeezed or stretched, or incorporate
defects. Periodic behavior of thermodynamics quantities
in 1/T , with period λ, arise, and provide an experimental
diagnostic. Integration over the collective coordinate for
the broken symmetry contributes to the entropy, even at
zero temperature. Inspired by the spatial crystal - iTime
crystal analogy, one might also consider the possibility
of iTime glasses (iGlasses), which would likewise have
residual entropy, but no simple order, or iQuasicrystals.

Comments: 1. It is interesting to speculate that a
(considerably) more elaborate quantum-mechanical sys-
tem, whose states could be interpreted as collections of
qubits, might be engineered to traverse, in its ground con-
figuration, a programmed landscape of structured states
in Hilbert space over time.
2. Fields or particles in the presence of a time crystal

background will be subject to energy-changing processes,
analogous to crystalline Umklapp processes. In either
case the apparent non-conservation is in reality a trans-
fer to the background. (In our earlier model, O(1/N)
corrections to the background motion arise.)
3. Many questions that arise in connection with any

spontaneous ordering, including the nature of transitions
into or out of the order at finite temperature, critical
dimensionality, defects and solitons, and low-energy phe-
nomenology, likewise pose themselves for time crystal-
lization. There are also interesting issues around the
classification of space-time periodic orderings (roughly
speaking, four dimensional crystals [4]).
4. The a.c. Josephson effect is a semi-macroscopic

oscillatory phenomenon related in spirit to time crystal-
lization. It requires, however, a voltage difference that
must be sustained externally.
5. Quantum time crystals based on the classical time

crystals of [1], which use singular Hamiltonians, can be
constructed by combining the ideas of this paper with
those of [5], [6]. The appearance of swallowtail band
structures in [7], and emergence of complicated frequency
dependence in modeling finite response times [1], as in [8],
suggest possible areas of application.
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